# DIRC-based PID for the EIC - Progress Report

- T. Cao<sup>3</sup>, T. Horn<sup>1</sup>, C. Hyde<sup>2</sup>, Y. Ilieva<sup>3</sup>, P. Nadel-Turonski<sup>4,\*</sup>, K. Peters<sup>5</sup>, C. Schwarz<sup>5</sup>, J. Schwiening<sup>5</sup>, H. Seraydaryan<sup>2</sup>, W. Xi<sup>4</sup>, C. Zorn<sup>4</sup>.
- 1) The Catholic University of America, Washington, DC 20064
- 2) Old Dominion University, Norfolk, VA 23529
- 3) University of South Carolina, Columbia, SC 29208
- 4) Jefferson Lab, Newport News, VA 23606
- 5) GSI, 64291 Darmstadt, Germany

Generic Detector R&D for an Electron Ion Collider Advisory Committee Meeting, BNL, May 17, 2012

## Outline

1. Motivation summary

2. Simulations

3. Hardware

## DIRC principle

• Charged particle traversing radiator with refractive index n with  $\beta = v/c > 1/n$  emits Cherenkov photons on cone with half opening angle  $\cos \theta_c = 1/\beta n(\lambda)$ .



- For n> $\sqrt{2}$  some photons are always totally internally reflected for  $\beta \approx 1$  tracks.
- Radiator and light guide: bar made from Synthetic Fused Silica
- Magnitude of Cherenkov angle conserved during internal reflections (provided optical surfaces are square, parallel, highly polished)
- Photons exit radiator into expansion region, detected on photon detector array.
   (pinhole imaging/camera obscura or focusing optics)
- DIRC is intrinsically a 3-D device, measuring: x, y, and time of Cherenkov photons, defining θ<sub>c</sub>, φ<sub>c</sub>, t<sub>propagation</sub> of each photon.

# Momentum coverage and $\theta_c$ resolution



Extending  $\pi/K$  separation from 4 to 6 GeV/c requires  $\sigma_{\theta} \sim 1$  mrad (vs 2.4 in BaBar – a 58% reduction).

# PID as a function of $\theta_c$ resolution



# Improving the $\theta_c$ resolution

$$\sigma_{\theta_c}^{\textit{track}} = \frac{\sigma_{\theta_c}^{\textit{photon}}}{\sqrt{N_{\textit{p.e.}}}} \otimes \sigma^{\textit{correlated}} \qquad \begin{array}{c} \textit{Correlated term:} \\ \textit{tracking detectors, multiple scattering, etc.} \end{array}$$

$$\sigma_{\theta_c}^{photon} = \sqrt{\sigma_{bar-size}^2 + \sigma_{pixel-size}^2 + \sigma_{chromatic}^2 + \sigma_{bar-imperfection}^2}$$



- DIRC bar thickness can in principle also be increased beyond the 17 mm (19% r.l.) used in Babar
- Excellent 3D imaging (2 spatial + time) essential for pushing performance beyond state-of-the-art

#### Event reconstruction I

Calculate unbiased likelihood for signals to originate

from  $e/\mu/\pi/K/p$  track or from background:

Likelihood:  $Pdf(\theta_c) \otimes Pdf(\Delta t) \otimes Pdf(N_{\gamma})$ 

Pdf = Probability distribution function

Example: comparison of real event to simulated response of BABAR DIRC to  $e/\pi/K/p$ .

Time resolution important for background suppression





#### Event reconstruction II



- For design purposes it is better to reconstruct the single-photon  $\theta_c$  resolution and photon yield
- Can serve as figure of merit
- Will be used to quantify the impact of each design parameter

## R&D goals

#### 1. Demonstrate feasibility of using a DIRC in hermetic EIC detector

- Compact readout "camera" (expansion volume + sensors)
- Operation in high magnetic fields (up to 2-4 T)

#### 2. Investigate possibility of pushing state-of-the-art performance

- Extend  $3\sigma \pi/K$  separation beyond 4 GeV/c, maybe as high as 6 GeV/c
  - also improve  $e/\pi$  and K/p separation

#### 3. Study integration of the DIRC with other detector systems

- Supplementary gas Cherenkov?
- Integration with solenoid, tracking, calorimeter, etc
- Accelerator backgrounds (in collaboration with SLAC)

## Important Events

#### Postdoc (H. Seraydaryan) was hired at ODU in November 2011

• Currently working 50% on DIRC simulations and reconstruction

#### Collaboration meeting at JLab, March 23 - 29, 2012

- Full participation
- A strategy for simulation and expansion volume design was laid out

#### Travel to GSI, May 20 - June 3, 2012

- This Sunday H. Seraydaryan is going to GSI for two weeks
- The primary goals of the visit are to set up the event reconstruction, work on the simulations, and familiarize her with the test setup at GSI.

## Design Strategies

#### 1. Expansion volume and sensors outside of the endcap

- Suggested by the Advisory Committee
- Requires longer bars
  - Good for chromatic correction via fast timing (longer path)
- Many bounces  $\rightarrow$  wide radiator bars preferred (= plates, one per box)
  - Lower bar cost (50% 75%)
  - Requires new event reconstruction methods (synergies with work for PANDA)
- Less constrained expansion volume geometry
  - Mirror focusing in solid fused silica blocks as in SuperB
  - Sensors in lower B-fields

#### 2. Expansion volume and sensors inside solenoid

- Need compact expansion volume
  - Will explore focusing with both mirrors and lenses
- Conventional (BaBar-like) radiator bars
  - Well understood reconstruction
  - Good for proof of concept

## Detector integration: high-performance DIRC



## Detector integration: DIRC + threshold Cherenkov







DIRC expansion volume

• A detector configuration using a supplementary Cherenkov would not be as easy to adapt to placing of the EV outside.

## DIRC simulations and EV design

Ray-tracing software (DRCPROP)
will be used for parameter studies
and the inititial design of the EV

 Detailed studies of the selected EV design will be performed using GEANT4

- This can then be implemented into the GEANT4 (GEMC) framework used for the EIC detector
  - Integration studies



First tests of implementing a DIRC into GEANT4 at ODU/JLab using the BaBar geometry

## Simulations using lenses with air gap



PANDA prototype with lens



- Lenses with an air gap provide a sharp image
- Photon losses due to internal reflection for some track angles.

## First simulations of new lens without air gap



• High-n lenses and antireflective coatings can reduce photon losses

# SuperB EV design as starting point with mirrors





- SuperB mirror optics have been implemented in dreprop
- Will be modified to fit EIC requirements
- Simulations will start soon

#### Procurement of sensors



Hamamatsu 9500 MaPMT 16x16 channels, \$8.5k



- Have received quotes from Hamamatsu for the 9500 and the newer R11265 Multi-anode PMTs
  - Both have pixel size of about 3 mm
  - Will be used for studies of focusing optics
- Contacted BINP regarding planned purchase of their round MCP-PMT for B-field studies
  - Currently not available with sufficiently good single-photon properties
  - Similar Photoek model is much more expensive (20k Euro)
  - Will postpone purchase until needed for tests at the new facility in year 2

## Procurement of DAQ



**HADES TRBv2 readout system** 



Actual TRBv3 board. Size is 20 x 23 cm.

- EIC setup will use the new HADES TRBv3
  - Expected to be available this summer
- New version can still take advantage of DAQ infrastructure used for PANDA DIRC
- Procurement will soon be initiated
  - Preparations already under way at GSI

## Summary

#### Simulations of expansion volume is on track

- Tools are in place
- Simulation strategy has been agreed on at collaboration meeting
- Simulations of lens-based optics are in progress
- Simulations of mirror-based optics will begin shortly

#### Hardware procurement

- Generally on track
- Some delays with sensor procurement will not affect schedule

#### Travel funds spent

• Close transatlantic collaboration!

# Backup

### PANDA: results from 2011 tests at CERN



## Primary responsibilities

#### 1. Simulations of DIRC performance and design of EV prototype

Old Dominon University

#### 2. Integration with the EIC detector

Catholic University of America

#### 3. Prototyping and hardware test (except high magnetic fields)

• GSI (Helmholtzzentrum für Schwerionenforschung)

#### 4. Sensor test in high magnetic fields

University of South Carolina and Jefferson Lab

*Note:* The proposal is a collaborative effort and most institutions will contribute to more than one of the areas above regardless of their primary responsibility

## Funding Request for FY12 (and FY13)

| Budget        | FY11      | FY12      | FY13      | Total     |
|---------------|-----------|-----------|-----------|-----------|
| Postdoc (50%) | \$53,290  | \$54,000  | \$55,000  | \$162,290 |
| Students      | \$8,300   | \$13,764  | \$13,764  | \$35,828  |
| Hardware      | \$41,970  | \$58,630  | \$57,200  | \$157,800 |
| Travel        | \$11,440  | \$13,606  | \$14,036  | \$39,082  |
| Total         | \$115,000 | \$140,000 | \$140,000 | \$395,000 |

The salaries for the postdoc and students include university overhead. Matching funds are available for the postdoc. The travel includes JLab or USC overhead. Hardware includes JLab or CUA overhead.

| Budget                               | FY11      | FY12      | FY13      | Total     |
|--------------------------------------|-----------|-----------|-----------|-----------|
| Old Dominon Univesity (ODU)          | \$53,290  | \$54,000  | \$55,000  | \$162,290 |
| Catholic University of America (CUA) | \$9,800   | \$8,300   | \$8,300   | \$26,400  |
| University of South Carolina (USC)   |           | \$7,606   | \$7,606   | \$15,212  |
| JLab and GSI (through MoU)           | \$51,910  | \$70,094  | \$69,094  | \$191,098 |
| Total                                | \$115,000 | \$140,000 | \$140,000 | \$140,000 |

#### Deliverables

#### Year 1 - requirements, simulations, simple EV prototype

- 1. Initial  $e/\pi$  identification requirements for the central EIC detector.
- 2. Simulation and reconstruction framework for DIRC prototype.
- 3. DIRC resolution studies and design of prototype.
- 4. Compact expansion volume prototype with multi-pixel readout.
- 5. DAQ system tested using laser pulser.

#### Year 2 - integration with EIC and design of final prototype

- 1. Integration of a DIRC into the EIC detector.
- 2. Performance plots for EIC DIRC.
- 3. Design for final prototype EV.
- 4. Test of sensor response at 2-4 T magnetic field.
- 5. Cherenkov ring resolution in test beam (if available).

#### Year 3 - tests with final "camera" prototype

- 1. Performance parameters of DIRC in the EIC detector.
- 2. In-beam test of compact EV (if available)
- 3. Comparison of photon yield for different multi-pixel sensors
- 4. Determination of Cherenkov angle resolution of final prototype EV

#### PANDA: BARREL DIRC READOUT ELECTRONICS

#### Electronics design demanding

- · Signal rise time typically few hundred picoseconds.
- · 10-100x preamplifier usually needed.
- · High bandwidth 500MHz few GHz (optimum bandwidth not obvious).
- Pulse height information required for < 100 ps timing (time walk correction), and desirable for 100-200 ps timing (ADC / time over threshold / waveform sampling / ... )
- · PANDA will run trigger-less.
- · Large data volume (Disk: up to 200 Gb/s).
- · Example:

HADES TRB board with NINO TOF add-on in GSI test beam in 2009, updated TOF add-on in test beams at GSI (next week) and at CERN in July.

- · Significant development effort ahead.
- dSiPM with digitization on chip no TDC, preamp,
   ADC, etc development required.



## Supplementary threshold Cherenkov detector



Number of p.e. in 60 cm of gas (left), and threshold as function of gas pressure (right)

- If needed, a supplementary threshold Cherenkov can provide
  - e/π separation for 1-3 GeV/c
  - $\pi/K$  separatation for 4-9 GeV/c (higher with some underpressure)
- A radiator thickness of 60 cm (+ 10 cm for readout?) is clearly adequate, 40 cm may be sufficient
- $C_4F_{10}$  gas can be replaced by the more eco friendly  $C_4F_8O$